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A theoretical comparison of a number of near-field acoustic error sensing strategies is
undertaken for active control of harmonic free-field sound radiation. Error sensing
strategies investigated include the minimization of acoustic potential energy density,
acoustic kinetic energy density, total acoustic energy density and mean active sound
intensity at a point and the minimization of the sum of each cost function at a number
of points in the near field. The error sensing strategies are analyzed for harmonic sound
fields radiated by a monopole primary source and a dipole-like pair of primary sources.
The control source is a monopole radiating at the same frequency and the criterion used
to assess the error sensing strategies is the minimization of the total radiated acoustic
power. It was found that the most appropriate near-field acoustic error sensing strategy
for the active control of harmonic free-field sound radiation is minimizing the sum of the
weighted mean active intensity in the direction normal to the surface surrounding all the
primary and control sources.
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1. INTRODUCTION

Some of the first attempts to control sound radiation into free space can be found in the
work directed at controlling tonal noise radiated by large electrical transformers [1–8].
From the first published attempt to control electrical transformer noise reported by
Conover in 1956 to the more recently commercial ‘‘Quiet Power’’ system in the U.S. using
small acoustic sources and piezoceramic patches to control transformer noise, a significant
amount of research has been done on the active control of harmonic free-field sound
radiation, but most of the research has focused upon control source design and location
and the use of far-field error sensors. Research on acoustic control source can be loosely
divided into two categories: control sources that are placed a relatively large distance from
the primary source [9] (i.e., at a distance of the order of a wavelength or greater) and
control sources that are placed close to the primary source [10, 11]. For each category, the
control sources can be either arrays of monopoles or multipoles [12]. Research on error
sensors has included the control of harmonic sound pressure at a point, the minimization
of the sum of the squared pressure at a number of far-field error sensors and the
minimization of the total acoustic power output [13–15].

The design of the ‘‘physical’’ part of the active noise control system involves several
steps. One of the most important is to find the best locations of error sensors according
to the primary source characteristics. Most of the work on optimizing the locations of the
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acoustic error sensors has been focused on far-field sensors because usually far-field sound
pressure level is the target to be controlled. Much of the previous work has also shown
that minimizing the sound level at a number of error microphones at some distance from
a transformer in the far acoustic field did not result in global noise reduction and also large
variations in the sound pressure level occurred over time as a result of ground and
atmospheric effects. In addition to the large variation with time of the sound level at the
error sensors, atmospheric wind and temperature gradients cause sound waves to travel
in curved paths and this often results in far-field error microphones not ‘‘sensing’’ sound
that eventually finds its way into the community. Far-field error sensors also cause
controller stability problems as a result of the large acoustic time delays which they
introduce into the control system. Meanwhile, the optimum compactness of the whole
system is not realized in practice when far-field error sensors are used. All of these problem
can be solved by the use of near-field error sensors but the challenge is to find a convenient
cost function to minimize which will result in the minimization of global radiated sound
power. Until now, little work has been reported on the use of near-field acoustic error
sensors for the active control of harmonic free-field sound radiation.

On the other hand, several near-field error sensing techniques involving structural
vibration sensors have been developed for the minimization of structurally radiated sound
[16–20]. Clark and Fuller have discussed the use of PVDF film modal sensors and
feedforward control applied to rectangular acoustic radiators [16]. By choosing the
appropriate location and shape of the PVDF film, only those structural modes that
efficiently radiate to the far field are observed. Minimization of the amplitudes of these
‘‘radiation modes’’ is thus guaranteed to minimize the total sound power while eliminating
the use of the far-field error microphones. Maillard and Fuller discussed advanced time
domain wavenumber sensing for structural acoustic systems which implemented point
structural sensors in parallel with an array of digital filters to obtain an error signal directly
related to the far-field pressure in a prescribed direction [17]. The work has been extended
by Tanaka, Snyder and Hansen to the active control of sound transmission into a coupled
cavity by using distributed parameter modal sensors called ‘‘smart sensors’’ [18, 19]. More
recently, Cazzolato and Hansen used finite element analysis to investigate the using of
structural error sensors on more complex geometries [20].

Wang and Fuller presented a theoretical analysis of the near-field time averaged intensity
and pressure distribution of actively controlled plate-radiated sound [21]. It was found
that, although limited to the (3,1) mode resonance case, applying control leads to an overall
fall in the magnitudes of the near-field pressure and intensity vectors while the complexity
of the pressure field is markedly increased. They suggested that if a distributed pressure
sensor was located near the plate, then minimizing the near-field sensor output might have
the same control influences as far-field point sensors, at least for plate modes on resonance.
But they did not prove that.

Active control of noise in ducts and enclosures has been widely investigated theoretically
and experimentally with regard to various error sensor strategies: local sound pressure,
total acoustic potential energy, downstream potential energy, positive-travelling pressure,
total acoustic radiation power, acoustic radiation power of the control sources and the
active sound intensity [22–24]. It was found generally that each strategy has been associated
with a particular configuration and a particular objective for minimizing the sound
field. A theoretical comparison of a number of error sensing strategies has also been
undertaken [23] with the objective of determining an optimum strategy, appropriate for
both plane wave and higher-order mode propagation for a range of duct termination
conditions.
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There may be two reasons for the small effort so far directed toward the use of near-field
acoustic error sensors: one is that it is usually recognized that reductions in far-field
pressure are often accompanied by increases in the near-field pressure [3, 13] and the other
is the complex and extensive computations required for existing methods such as acoustic
holography and the boundary element method [25–29]. The only work that the authors
have found concerning the uses of near-field acoustic error sensors was presented by
Hansen and Snyder [14] , who gave a figure illustrating the resultant power attenuation
achieved by minimizing the acoustic pressure amplitude at a single location within a
distance of one wavelength from the centre of monopole primary and control sources. They
found that placing an error sensor in the near field of the primary source is a ‘‘risky’’
pursuit because the acoustic power attenuation achieved when minimizing the acoustic
pressure at the sensor varied rapidly with the sensor location.

The objective of this paper is to extend the investigation of the minimization of near-field
pressure at a point to the study of a number of different error sensing strategies such as
the minimization of acoustic potential energy density, acoustic kinetic energy density, total
acoustic energy density and mean active sound intensity at a point and the minimization
of the sum of each cost function at a number of points in the near field. These error sensing
strategies will be analyzed here for the harmonic sound field radiated by a monopole
primary source and the harmonic field radiated by a dipole-like pair of primary sources.
For both cases, the control source is a monopole radiating at the same frequency.

2. ACTIVE CONTROL OF HARMONIC FREE FIELD SOUND RADIATION

The sound pressure at some location re in space due to the harmonic operation of an
acoustic monopole source located at a position rq is

p(re )=
jvr0q e−jkr

4pr
, (1)

where r= =re − rq =, q is the volume velocity of the monopole source, k is the acoustic
wavenumber at the frequency v of interest, r0 is the mean air density and the positive
harmonic time dependence of the form ejvt is implicit in the equation (this will be the case
throughout the paper).

The particle velocity at location re only exists in the radial direction, and is defined as

u(re )=
p(re )
r0c 01−

jl
2pr1 (re − rq )

r
, (2)

where l is the acoustic wavelength and c is the sound speed in air.
The fluid kinetic energy per unit volume is known as the ‘‘kinetic energy density’’, and

at location re it is

T(re )= 1
2r0=u(re )=2. (3)

The fluid potential energy per unit volume is known as the ‘‘potential energy density’’,
and at location re it is

U(re )=
1

2r0c2 p(re )2. (4)
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The total mechanical energy per unit volume is known as the ‘‘sound energy density’’
or ‘‘total energy density’’, and at location re it is

E(re )=T+U= 1
2r0=u(re )=2 +

1
2r0c2 p(re )2. (5)

The expression for the mean active intensity directed from rp to re at location re is [30, 31]

I(re )= 1
2 Re {p(re )u*(re )}. (6)

As the system being considered is linear, the concept of superposition is valid, so that
the total sound pressure and particle velocity at location re , radiated from a monopole
primary source and a monopole control source or that radiated by an acoustic dipole-like
pair of monopole primary sources with a monopole control source, can be obtained by
simple superposition (vectors superposition for velocity). Then the total kinetic energy, the
total potential energy, the total mechanical energy and the total mean active intensity can
be easily deduced through equations (3) to (6).

The value of the function F, to be minimized under the influence of the primary and
control sources can be expressed as a quadratic function of the control source volume
velocity Qc =[qc,1 qc,2 · · · qc,Nc ]T, for Nc control sources, such that [13]

F=QH
c aQc + b1Qc +QH

c b2 + cp , (7)

the composition of the matrices a, b1, b2 and the value of the variable cp are all dependent
upon F, and their specific form will be outlined for each error sensor strategy. The matrix
form of the proceeding equation allows any number of primary and control sources.
Differentiating equation (7) with respect to the control sources volume velocity vector Qc ,
and equating the result to zero, yields the optimum control source volume velocity as

Qcopt =−1
2a−1(bH

1 + b2). (8)

3. ERROR SENSING STRATEGIES

The criteria which are considered in the paper are the minimization of: (1) the potential
energy density at a point (this is equivalent to the minimization of the sound pressure at
a point); (2) the kinetic energy density at a point (this is equivalent to the minimization
of the squared particle velocity at a point); (3) the total energy density at a point; (4) the
mean active intensity in the radial direction at a point; (5) the sum of the potential energy
density at a number of points through the near field (this is equivalent to the minimization
of the sum of the squared pressure at a number of points throughout the near field); (6)
the sum of the kinetic energy density at a number of points through the near field (this
is equivalent to the minimization of the sum of the squared particle velocity at a number
of points throughout the near field); (7) the sum of the total energy density at a number
of points through the near field; (8) the sum of the mean active intensity in the radial
direction at a number of points encompassing the sound sources.

It is assumed the acoustic centre of the primary and control sources is at the origin of
the spherical co-ordinate system, so the total radiated acoustic power is equal to the
integration of the mean acoustic intensity out of the sphere encompassing the sound
sources. The sum of the mean active intensity in the radial direction at a number of
near-field points encompassing the sound sources is an approximation of the total acoustic
power; therefore the mean active intensity in the radial direction is selected as the
minimized objective.
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Minimization of the total acoustic power output of the primary and control sources is
difficult in a practical context, and hence is treated chiefly as a theoretical strategy and
as a criterion used to assess other error sensor strategies in this paper. The minimized total
radiated acoustic power (obtained by far-field intensity integration or near-field analysis)
when the total power output is selected as the criterion to be minimized is [14],

Wmin =
v2r0

8pc
=qp =2(1− sinc2kd), (9)

for the single monopole primary source/single monopole control source system. d is the
distance between the primary and control sources and qp is the primary source volume
velocity.

The minimum total radiated acoustic power for a dipole-like pair of primary
sources/single monopole control source system when the total power output is selected as
criterion is [14],

Wmin =
v2r0

8pc
=qp =2{2[1− sinc(kdp )]− [sinc(kd1)− sinc(kd2)]2}, (10)

where qp is the primary source volume velocity, taken to be equal in amplitude but opposite
in sign for two primary monopole sources, d1 and d2 are the separation distances between
the control source and two primary sources, and dp is the separation distance between the
two primary sources.

Assuming there are Np primary sources with the volume velocity
Qp =[qp,1 qp,2 · · · qp,Np ]T, for the error criterion of minimization of the sum of the potential
energy density at Ne points through the near field, the error function F and matrices in
equation (7) take the form

F= s
Ne

i=1

U(ri ), (11)

a=
1

2r0c2 ZH
c Zc , (12)

b1 =
1

2r0c2 QH
p ZH

p Zc , (13)

b2 =
1

2r0c2 ZH
c ZpQp , (14)

cp =
1

2r0c2 QH
p ZH

p ZpQp , (15)

where Zp , an Ne ×Np matrix and Zc , an Ne ×Nc matrix are the matrices of the transfer
functions between the pressure at Ne error locations and Np primary and Nc control source
volume velocities respectively:

zp (r1)T zc (r1)T

zp (r2)T zc (r2)T

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

Zp = ···
, Zc = ···

. (16)

zp (rNe )
T zc (rNe )

T

zp (ri ) is the Np ×1 vector of the transfer functions between the pressure at the error
location ri and the primary source volume velocity, and zc (ri ) is the Nc ×1 vector of the
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transfer function between the pressure at the error location ri and the control source
volume velocity,

zp,1(ri ) zc,1(ri )

zp,2(ri ) zc,2(ri )
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

zp (ri )= ···
, zc (ri )= ···

, (17)

zp,Np (ri ) zc,Nc (ri )

where zp,m (ri ) and zc,n (ri ), the transfer function between the pressure at the error location
ri and the volume velocity of the mth primary source located at rp,m and nth control source
located at rc,n , can be obtained from equation (1),

zp,m (ri )=
jvr0 e−jk=ri − rp ,m =

4p=ri − rp,m = , zc,n (ri )=
jvr0 e−jk=ri − rc ,n =

4p=ri − rc,n =
. (18)

The minimization of the potential energy density at a point is a subset of this strategy
for the case of Ne =1.

For the error criterion of minimization of the sum of the kinetic energy density at Ne

points through the near field, the error function F and matrices in equation (7) take the
form

F= s
Ne

i=1

T(ri ), (19)

a= 1
2r0YH

c Yc , (20)

b1 = 1
2r0QH

p YH
p Yc , (21)

b2 = 1
2r0YH

c YpQp , (22)

cp = 1
2r0QH

p YH
p YpQp , (23)

where Yp , an Ne ×Np matrix and Yc , an Ne ×Nc matrix are the matrices of the transfer
functions between the particle velocity at Ne error locations and Np primary and Nc control
source volume velocities respectively:

yp (r1)T yc (r1)T

yp (r2)T yc (r2)T

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

Yp = ···
, Yc = ···

, (24)

yp (rNe )
T yc (rNe )

T

yp (ri ) is the Np ×1 vector of the transfer function between the particle velocity at the error
location ri and the primary source volume velocity, and yc (ri ) is the Nc ×1 vector of the
transfer function between the pressure at the error location ri and the control source
volume velocities,

yp,1(ri ) yc,1(ri )

yp,2(ri ) yc,2(ri )
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

yp (ri )= ···
, yc (ri )= ···

, (25)

yp,Np (ri ) yc,Nc (ri )
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where yp,m (ri ) and yc,n (ri ), are the transfer functions between the particle velocity at the error
location ri and the volume velocity of respectively the mth primary source located at rp,m

and the nth control source located at rc,n , and can be obtained from equation (2),

yp,m (ri )=
zp,m (ri )

r0c 01−
jl

2p=ri − rp,m =1 (ri − rp,m )
=ri − rp,m = ,

yc,n (ri )=
zc,n (ri )
r0c 01−

jl
2p=ri − rc,n =1 (ri − rc,n )

=ri − rc,n =
. (26)

In the preceding calculations, the vectors are decomposed into rectangular co-ordinates
so that they can be calculated easily. The minimization of the kinetic energy density at
a point is a subset of this strategy for the case of Ne =1.

For the error criterion of minimization of the sum of the total energy density at Ne points
through the near field, the error function F and matrices in equation (7) take the form

F= s
Ne

i=1

E(ri )= s
Ne

i=1

[T(ri )+U(ri )], (27)

a= 1
2r0YH

c Yc +
1

2r0c2 ZH
c Zc , (28)

b1 = 1
2r0QH

p YH
p Yc +

1
2r0c2 QH

p ZH
p Zc , (29)

b2 = 1
2r0YH

c YpQp +
1

2r0c2 ZH
c ZpQp , (30)

cp = 1
2r0QH

p YH
p QpYp +

1
2r0c2 QH

p ZH
p ZpQp , (31)

where Yp , Yc , Zp , Zc and Qp are defined using the above equations to minimize the sum
of the potential and kinetic energies. The minimization of the total energy density at a point
is a subset of this strategy for the case of Ne =1.

For the error criterion of minimization of the sum of the mean active intensity in the
radial direction at Ne points through the near field using one monopole control source,
the error function F and matrices in equation (7) take the form

F= s
Ne

i=1

I(ri )= 1
2 s

Ne

i=1

Re {u*(ri )p(ri )}, (32)

a= 1
2

YH
c Zc +YT

c Z*c
2

= 1
2Re {YH

c Zc}, (33)

b1 = 1
2

QH
p YH

p Zc +YT
c Z*p Q*p

2
(34)

b2 = 1
2

YH
c ZpQp +QT

p YT
p Z*c

2
, (35)

cp = 1
2Re {QH

p YH
p ZpQp}, (36)



.   .88

where equations (33)–(35) are obtained using

QH
c =Q*c , Qc =QT

c . (37)

In the calculation, Yp , Yc , Zp , Zc and Qp are defined as above except that yp,m (ri ) and
yc,n (ri ) are changed to denote the transfer function between the particle velocity in the radial
direction at the error location ri , and the volume velocity of the mth primary source located
at rp,m , and the control source located at rc,1 respectively, in the form of scalars,

yp,m (ri )=
zp,m (ri )

r0c 01−
jl

2p=ri − rp,m =1 (ri − rp,m )
=ri − rp,m = ·

ri

=ri =
,

yc,1(ri )=
zc,1(ri )
r0c 01−

jl
2p=ri − rc,1=1 (ri − rc,1)

=ri − rc,1=
·

ri

=ri =
. (38)

It should be noted a unique minimum only exists when a is positive. This can be easily
proved as follows:

a= a(1,1)

= 1
2 s

Ne

i=1

Re {y*c,1(ri )zc,1(ri )}

= 1
2 s

Ne

i=1

Re 601+
jl

2p=ri − rc,1=1 (ri − rc,1)
=ri − rc,1=

·
ri

=ri =
z*c,1(ri )zc,1(ri )7

= 1
2 s

Ne

i=1

(ri − rc,1)
=ri − rc,1=

·
ri

=ri = $ vr0

4p=ri − rc,1=%
2

(39)

and

(ri − rc,1)
=ri − rc,1=

·
ri

=ri =
q 0 if =ri − rc,1=2 + =ri =2 q =rc,1=2. (40)

If equation (40) is satisfied, then a unique minimum can be guaranteed. The
minimization of the mean active intensity in the radial direction at a point is a subset of
this strategy for the case of Ne =1.

4. RESULTS

For the results presented here, a black box ideal feedforward controller has been
assumed. The design of a feedforward active control system can be viewed as a hierarchical
procedure aimed at optimizing the performance of the four principal components of the
system; introduction of the control signal, extraction of an error signal, acquisition of a
primary disturbance-correlated reference signal for the controller and design of the
controller itself. If any one of the stages is improperly designed then the system is doomed,
as it is only as good as its weakest link. For the systems considered in this paper, the
location of the control monopole is typical [14], the error signal is obtained via the
strategies outlined in the previous section and fed to the controller, the reference signal
is obtained from the input to the primary source while the controller is assumed to be ideal.
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Figure 1. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for the
minimization of potential energy density at a point. Single monopole primary and control sources separated by
l/10.

The first arrangement considered here is the most simple system of all, where a single
monopole control source located at (l/20,0) is used to attenuate the acoustic radiation
from a single monopole primary source located at (−l/20,0) in 2-D rectangular
co-ordinates. The distance between them is l/10, which places an absolute bound upon

Figure 2. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for the
minimization of kinetic energy density at a point. Single monopole primary and control sources separated by
l/10.
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Figure 3. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for the
minimization of total energy density at a point. Single monopole primary and control sources separated by l/10.

the level of acoustic power attenuation of 9·0 dB. The acoustic power attenuation is defined
here as 10 log10 (Wunc /Wcont ). Wunc is the acoustic power of the primary source while Wcont

is the total acoustic power of the whole system including the primary source and optimum
control source.

Figure 4. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for the
minimization of mean active intensity in the radial direction at a point. Single monopole primary and control
sources separated by l/10.
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Figure 5. Maximum achievable acoustic power attenuation as a function of error sensor location on the control
source side of the control source/primary source axis for the minimization of all four criteria: ·– ·– ·–, potential;
------, kinetic; · · · · · · · · · , total energy; ——, intensity. Single monopole primary and control sources separated
by l/10.

Figures 1 to 4 illustrate the resultant power attenuation from minimizing the first four
criteria respectively at a single location in the near field (within a distance of one
wavelength from the centre of the primary and control sources) for harmonic excitation.
The first four criteria are the minimization of the potential energy density at a point, the
kinetic energy density at a point, the total energy density at a point and the mean active
intensity in the radial direction at a point. Note that Figure 1 is after Hansen and Snyder
[14], which is included in this paper for comparison.

From the acoustic power attenuation contours in Figures 1–4, it is readily apparent that
at about one wavelength distance from the centre of the primary and control sources the
four criteria are nearly the same. However, when the error sensor approaches the mid-point
between the two sources, the acoustic power attenuation achieved by the four criteria
becomes different. This is in agreement with theory [31] because the far field (at a distance
of the order of one wavelength or greater) is characterized by simple relationships valid
for a plane wave; to the first order in 1/kr, ur:p/r0c and uu:0 and u8:0; to the second
order, E:=p=2/r0c2 = r0=ur =2 and Ir =Ec. Therefore, in the far field all the four criteria are
the same.

Although at the same point in the near field, the acoustic power attenuation achieved
by different criteria have different values; for example, at the point (l/8, 0) the achieved
acoustic power attenuation is 2·72 dB, 2·13 dB, 2·27 dB and 5·00 dB for potential, kinetic,
total energy density and sound intensity, respectively, and each criterion has its own
optimum point; yet if one region (not very near the sources) is good for one criterion, it
is usually also a good error sensor location for the others. This can be observed in Figures
1–4 where the contours in each figure have similar shapes. The nearest optimum error
sensor placements for all four criteria will fall on a line perpendicular to the control
source/primary source axis, centred at a position between the primary and control sources
and always closer to the control sources. The worst error sensor placements are those
approaching the primary source from the primary source side.

The differences in the four criteria can be more clearly illustrated in Figure 5. As the
error sensors approach the mid-point between two sources, when the distance is larger than
about l/4, the kinetic energy density strategy is the best and the potential energy density
strategy is the worst, while when the error sensor is quite near the mid-point between two
sources (within l/4), the intensity strategy becomes the best, the kinetic energy density
strategy becomes the worst and the total energy density strategy is between the two.

Figures 6–9 show the results of minimizing the sum of each cost function over a number
of sensor locations. The sensors are located evenly on a circle surrounding the primary
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Figure 6. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of l/8 centred at the acoustic centre of the primary and control sources. Single
monopole primary and control sources separated by l/10.

Figure 7. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of l/4 centred at the acoustic centre of the primary and control sources. Single
monopole primary and control sources separated by l/10.

and control sources with different radii in the xy plane. The first error sensor location is
at the (+radius, 0), then including location (−radius, 0), and then (0, radius) and (0,
−radius) ... etc. The solid lines represent the results from minimizing the sum of the mean
active sound intensity in the radial direction, the dashed lines represent the results from
minimizing the sum of the kinetic energy density, the dotted lines represent that for the
total energy density and the dash–dot lines are for the potential energy density. Note that
the four lines are coincident in Figure 9 because they have the same value.

There are two important points which are evident from the results. First, close to optimal
results can be achieved with a relatively small number of sensors (eight, for example) in
the far field or near field (not quite near the centre, but beyond l/4) by adjusting the control
source strength to minimize the sum of any cost function. The results from early research
undertaken by Nelson and Elliott [13] gave the same conclusion for minimizing the sum
of the squared pressure at several angular locations in the far field. Second, when the error
sensors are quite close to the sources (within l/8), the acoustic power attenuation achieved
by minimizing the sum of each cost function are different; the best results are obtained
by minimizing the sum of the mean active sound intensity in the radial direction, and the
worst is from the kinetic energy density minimization.

The next arrangement to be considered is that of a single monopole control source
located at (l/6, 0) being used to attenuate acoustic radiation from a dipole-like pair of
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Figure 8. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of l/2 centred at the acoustic centre of the primary and control sources. Single
monopole primary and control sources separated by l/10.

Figure 9. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of 100l centred at the acoustic centre of the primary and control sources. Single
monopole primary and control sources separated by l/10.

primary sources located at (−l/6− l/20, 0) and (−l/6+ l/20, 0) in rectangular
co-ordinates. Note that the control source is at one of the optimum locations, which place
an absolute bound upon the level of acoustic power attenuation of 3·7 dB. Details about
the arrangement can be found in reference [14].

Figures 10–13 illustrate the resultant power attenuation achieved by minimizing the first
four criteria respectively at a single location in the near field (within a distance of one
wavelength from the centre of the primary and control sources) for harmonic excitation.
Figure 14 shows the acoustic power attenuation as a function of error sensor location along
the control source side of the control source/primary source axis for the minimization of
all four criteria. Figures 15–18 show the results achieved by minimizing the sum of each
cost function over a number of error sensor locations. The sensors are located evenly on
a circle surrounding the primary and control sources with different radii in the xy plane.
The first error sensor location is at the (+radius, 0), then (−radius, 0), and then (0, radius)
and (0, −radius) ...etc. Note that the four lines are coincident in Figure 18 because they
have the same value.

After examining Figures 10–18, it can be seen that the following results also characterize
the dipole-like pair of primary sources/single monopole control source system: all the eight
criteria give the same results in the far field; if one region in the near field (not very near
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Figure 10. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for
the minimization of potential energy density at a point. Dipole-like pair of primary sources and a single monopole
control source separated by l/3.

the sources) is good for one criterion, it is usually also a good error sensor location region
for the others and vice versa; the worst error sensor placements are those approaching the
primary source from the primary source side; there are differences among different criteria,
especially when the error sensors approach the mid-point between primary and control

Figure 11. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for
the minimization of kinetic energy density at a point. Dipole-like pair of primary sources and a single monopole
control source separated by l/3.



1.0

–0.5

0.0

0.5

–1.0
–0.5–1.0 0.0 0.5 1.0

x–position (wavelengths)

y–
p

o
si

ti
o

n
 (

w
a

v
el

en
g

th
s)

1

2

1

–1

0

–5

–5

–10

–1

0
1

2
2

2
11

3

3.5

3.5

1

11

2

2

31

p c

1.0

–0.5

0.0

0.5

–1.0
–0.5–1.0 0.0 0.5 1.0

x–position (wavelengths)

y–
p

o
si

ti
o

n
 (

w
a

v
el

en
g

th
s)

1
1

1

–1

0

–5

–5

–10

2

–1

0 1
1

1

2

3.5

3.5

3
2

p c

2
3 2

1

      95

Figure 12. Maximum achievable acoustic power attenuation (dB) as a function of error sensor of total energy
density at a point. Dipole-like pair of primary sources and a single monopole control source separated by l/3.

sources. When the error sensor is quite near the mid-point between primary and control
sources (within l/4), the intensity strategy becomes the best and the kinetic energy density
strategy becomes the worst; close to optimal results can be achieved with a relatively small
number of sensors in the far field or near field (not quite near) by adjusting the control

Figure 13. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location for
the minimization of mean active intensity in the radial direction at a point. Dipole-like pair of primary sources
and a single monopole control source separated by l/3.



3

0

1

2

–1
0.20.0 0.4 0.6 0.8 1.0

x–position (wavelengths)

A
co

u
st

ic
 p

o
w

er
a

tt
en

u
a

ti
o

n
 (

d
B

)

4

–3
–2
–1

0
1
2
3

–4
41 16 64 256 1024 4096

Number of error sensors

A
co

u
st

ic
 p

o
w

er
a

tt
en

u
a

ti
o

n
 (

d
B

)

–8

–6

–4

0

2

4

6

–10
41 16 64 256 1024 4096

Number of error sensors

A
co

u
st

ic
 p

o
w

er
a

tt
en

u
a

ti
o

n
 (

d
B

)

.   .96

Figure 14. Maximum achievable acoustic power attenuation as a function of error sensor location on the
control source side of the control source/primary source axis for the minimization of all four criteria: ·– ·– ·–,
potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. Dipole-like pair of primary sources and a single
monopole control source separated by l/3.

Figure 15. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of 0·18l centred at the acoustic centre of the primary and control sources.
Dipole-like pair of primary sources and a single monopole control source separated by l/3.

Figure 16. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity.The sensors are located
evenly on the circle with a radius of l/4 centred at the acoustic centre of the primary and control sources.
Dipole-like pair of primary sources and a single monopole control source separated by l/3.
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Figure 17. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of l/2 centred at the acoustic centre of the primary and control sources.
Dipole-like pair of primary sources and a single monopole control source separated by l/3.

Figure 18. Sound power attenuation as a function of error sensor number for minimization of the sum of each
cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors are located
evenly on the circle with a radius of 100l centred at the acoustic centre of the primary and control sources.
Dipole-like pair of primary sources and a single monopole control source separated by l/3.

source strength to minimize the sum of any criterion; when the error sensors are quite close
to the sources, the acoustic power attenuation achieved by minimizing the sum of each
criterion is different; the best results are obtained from minimizing the total mean active
sound intensity in the radial direction.

There are also some differences for the dipole-like pair of primary sources/single
monopole control source system when compared with the single monopole primary source
system. The first is that more error sensors do not necessarily give better results. Sometimes
introducing additional error sensors causes the acoustic power attenuation to be decreased
as shown in Figures 16 and 17. The second is that at certain distances more error sensors
are needed to achieve a certain acoustic power attenuation, as shown by comparing Figures
16 and 17.

It is found that minimizing the sum of the mean active intensity in the direction normal
to the surface surrounding all the primary and control sources is the most effective strategy.
The reason is that the total acoustic power is the objective of control and the sum of the
mean active intensity in the direction normal to the surface surrounding all the primary
and control sources is a good approximation of the acoustic power if a reasonable number
of points are included in the sum. Because the reactive energy is relatively larger and more
concentrated near the sources and there is a large mount of near field kinetic energy and
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Figure 19. Angular distribution of pressure (Pa) in the far field. Single monopole primary and control sources
separated by l/10: ·– ·– ·–, primary source only; ------, primary plus optimum control sources (minimizing the
sum of active intensities at 4096 locations in the far field); ——, primary plus optimum control sources
(minimizing the total acoustic power).

potential energy that contribute little to the total acoustic power, minimizing the sum of
the kinetic energy density and total energy density in the near field is not appropriate for
this objective. But in the middle field (not very near field), minimizing the sum of the kinetic
energy density and total energy density sometimes are the best control strategies.

Figure 20. Angular distribution of pressure (Pa) in the far field. Dipole-like pair of primary and single
monopole control sources separated by l/3: ·– ·– ·–, primary source only; ------, primary plus optimum control
sources (minimizing the sum of active intensities at 4096 locations in the far field); ——, primary plus optimum
control sources (minimizing the total acoustic power).
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Figure 21. Sound power attenuation as a function of error sensor number for minimization of the weighted
sum of each cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors
are located evenly on the circle with a radius of l/8 centred at the acoustic centre of the primary and control
sources. Single monopole primary and control sources separated by l/10.

Minimizing the potential energy density in the very near field is also partly ineffective; the
reason is that the use of a large number of distributed pressure sensors located near the
sources may lead to an ‘‘unloading’’ of the whole radiation field by causing a large of area
of low pressure near the sources. The overall result would be a drop in radiated power
due to the low radiation impedance seen by the sources. It seems not to be the best cost
function.

There is another point of note, which is that even if a very large number of error sensors
are used in the far field, the system cannot reach the optimum by minimizing the sum of
each cost function. As shown in Figure 18, the acoustic power attenuation produced by
minimizing the sum of any cost function at 4096 locations in the far field is only 3·2 dB
while the optimum is 3·7 dB. The reason can be derived from the equation below which
indicates how to calculate the total radiated acoustic power by integration of the real
acoustic intensity out of the sphere encompassing the sound sources.

W=g
2p

0 g
p

0

Irr2 sin u du df=2pr2 g
p

0

Ir sin u du, (41)

Figure 22. Sound power attenuation as a function of error sensor number for minimization of the weighted
sum of each cost function: ·– ·– ·–, potential; ------, kinetic; · · · · · · · · · , total energy; ——, intensity. The sensors
are located evenly on the circle with a radius of l/4 centred at the acoustic centre of the primary and control
sources. Dipole-like pair of primary sources and a single monopole control source separated by l/3.
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Figure 23. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location along
a circle surrounding the sources for the minimization of potential energy density at a point. Single monopole
primary and control sources separated by l/10: ——, far field with a radius of 100l, –·–·–· , near field with a
radius of l/2.

Figure 24. Maximum achievable acoustic power attenuation (dB) as a function of error sensor location along
a circle surrounding the sources for the minimization of potential energy density at a point. Dipole-like pair of
primary sources and single monopole control source separated by l/3: ——, far field with a radius of 100l; –·–·–· ,
near field with a radius of l/2.

where r is the radius of the enclosing sphere, which is in the far field of the sources, u is
the angle between r and the control/primary source axis. So the best error sensor strategy
is the minimization of the sum of mean active intensity in the radial direction at a number
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of points encompassing the sound source with different weighting coefficients; the cost
function is,

FI = s
Ne

i=1

I(ri ) sin (ui ). (42)

Figures 19 and 20 depict the distribution of pressure (units: Pa) as a function of angular
location in the far field before and after active control. It is shown in Figure 19, that when
minimizing the sum of the active intensities at a large number of points for the single
primary and single monopole control source system, the angular distribution of total
pressure is almost the same as that obtained from minimizing the total acoustic power (if
the weighting coefficients are included in the cost function they will be exactly the same).
However, in Figure 20, for the dipole-like pair of primary sources and single monopole
control source system, it can be seen that the angular distributions of total pressure are
different for minimization of the two criteria. So for more complex sound fields, the
weighting coefficients must be included in the cost function.

Figures 21 and 22 show the results when the weighting coefficients sin ui are included
in all the cost functions as follows:

FU = s
Ne

i=1

U(ri ) sin (ui ), FT = s
Ne

i=1

T(ri ) sin (ui ), FE = s
Ne

i=1

E(ri ) sin (ui ), (43–45)

FI = s
Ne

i=1

I(ri ) sin (ui )=
1
2

s
Ne

i=1

Re {u*(ri )p(ri ) sin (ui )}. (46)

It can seen from Figures 21 and 22 that if a reasonable number of points are included
in the sum, then minimizing the sum of the weighted near-field mean active intensities can
give the same acoustic power attenuation as that obtained from minimizing the total
acoustic power for the two systems.

Comparing near-field error sensing strategies with those of far-field error sensing, it can
be seen that not only placing a sound pressure error sensor in the near-field of the primary
sources is a very ‘‘risky’’ pursuit, but placing sound pressure error sensors in the far field
of the sources is also a ‘‘risky’’ pursuit, as shown in Figures 23 and 24. The acoustic power
attenuation produced by minimizing potential energy density at (100l, 0) is −2·3 dB (an
effective increase of 2·3 dB!) in Figure 24.

In a practical system, the primary sound fields are much more complex and so it is very
difficult to select the optimum error sensor locations. Minimizing the sum of the weighted
potential energy density (acoustic pressure at a number of sensors) in the far field or the
sum of the weighted mean active intensity in a direction normal to the surface surrounding
all the primary and control sources appear to be effective strategies to avoid the increase
in power output that often occurs when adjusting control sources to produce zero pressure
at one location.

5. CONCLUSIONS

Eight different error sensing strategies have been evaluated for the active control of
harmonic free-field sound radiated by a monopole primary source and by a dipole-like pair
of primary sources. The control source was a monopole radiating at the same frequency
and the criterion used to assess the error sensor strategies was the minimization of the total
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radiated acoustic power. These error sensing strategies were minimization of the acoustic
potential energy density, acoustic kinetic energy density, total acoustic energy density and
mean active sound intensity at a point and the minimization of the sum of each of them
at a number of points in the near field.

From the results obtained using the eight error sensor strategies, the following
conclusions can be drawn at least for the cases studied here. First, in the far field all the
eight criteria give the same results and in the near field, if one region is good for one
criterion, it is usually also a good error sensor location region for the others and vice versa.
Second, it is impossible to obtain a cost function which can always be the best, despite
the distance of the error sensors from the control sources and the number of error sensors.
Last, when the error sensors are quite close to the control sources, the best error sensing
strategy is minimizing the sum of the mean active sound intensity in the radial direction,
and close to optimal results can be achieved with a relatively small number of sensors.

An experimental implementation of the proposed method is now being undertaken for
the active control of noise radiated by a large power transformer.
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